| parrotcode: Complex Numbers PMC Class | |
| Contents | PMCs |

classes/complex.pmc - Complex Numbers PMC Class

Complex provides a representation of complex numbers.
It handles string parsing/generating and basic mathematical operations.

static void complex_parse_string(Interp *interpreter, FLOATVAL *re, FLOATVAL *im, STRING *value)value to produce a complex number,
represented by the real (*re) and imaginary (*im) parts.
Raises an exception if it cannot understand the string.
The string should be of the form a+bi with optional spaces around + and before i.
You can also use j instead of i.static FLOATVAL *complex_locate_keyed_num(Interp *interpreter, PMC *self, STRING *key)key; valid keys are real and imag,
representing the real and imaginary parts of the complex number.PMC *instantiate()void *invoke(void *next)complex object according to 2.1.
Built-in Functions.
void init()void init_pmc (PMC *initializer)void destroy ()PMC *clone ()INTVAL get_integer ()FLOATVAL get_number ()STRING *get_string ()a+bi.INTVAL get_bool ()INTVAL get_integer_keyed (PMC *key)INTVAL get_integer_keyed_str (STRING *key)FLOATVAL get_number_keyed (PMC *key)FLOATVAL get_number_keyed_str (STRING *key)PMC *get_pmc_keyed (PMC *key)PMC *get_pmc_keyed_str (STRING *key)real and imaginary for imag).FLOATVAL get_number_keyed_int(INTVAL key) key = 0 ... get real part
key = 1 ... get imag part
void set_number_keyed_int(INTVAL key, FLOATVAL v) FLOATVAL get_number_keyed_int(INTVAL key) {
switch (key) {
case 0:
return RE(SELF);
case 1:
return IM(SELF);
default:
internal_exception(1, "Complex: key must be 0 or 1");
}
return 0.0;
}
void set_number_keyed_int(INTVAL key, FLOATVAL v) {
switch (key) {
case 0:
RE(SELF) = v;
break;
case 1:
IM(SELF) = v;
break;
default:
internal_exception(1, "Complex: key must be 0 or 1");
}
}
/*
void set_string_native (STRING *value)value into a complex number; raises an exception on failure.void set_pmc (PMC *value)value is a Complex PMC then the complex number is set to its value; otherwise value's string representation is parsed with set_string_native().void set_integer_native (INTVAL value)void set_number_native (FLOATVAL value)value and the imaginary part to 0.0void set_integer_keyed (PMC *key, INTVAL value)void set_integer_keyed_str (STRING *key, INTVAL value)void set_number_keyed (PMC *key, FLOATVAL value)void set_number_keyed_str (STRING *key, FLOATVAL value)void set_pmc_keyed (PMC *key, PMC *value)void set_pmc_keyed_str (STRING *key, PMC *value)real and imaginary for imag) to value.PMC *add (PMC *value, PMC *dest)PMC *add_int (INTVAL value, PMC *dest)PMC *add_float (FLOATVAL value, PMC *dest)value to the complex number, placing the result in dest.PMC *subtract (PMC *value, PMC *dest)PMC *subtract_int (INTVAL value, PMC *dest)PMC *subtract_float (FLOATVAL value, PMC *dest)value from the complex number, placing the result in dest.PMC *multiply (PMC *value, PMC *dest)PMC *multiply_int (INTVAL value, PMC *dest)PMC *multiply_float (FLOATVAL value, PMC *dest)value, placing the result in dest.void i_multiply (PMC *value)void i_multiply_int (INTVAL value)void i_multiply_float (FLOATVAL value)value.PMC *divide (PMC *value, PMC *dest)PMC *divide_int (INTVAL value, PMC *dest)PMC *divide_float (FLOATVAL value, PMC *dest)value, placing the result in dest.void i_divide (PMC *value, PMC *dest)void i_divide_int (INTVAL value, PMC *dest)void i_divide_float (FLOATVAL value, PMC *dest)SELF by value inplace.PMC *neg(PMC *dest)void neg()dest to the negated value of SELF.INTVAL is_equal (PMC *value)value and returns true if they are equal.PMC *absolute(PMC *dest)void i_absolute()dest to the absolute value of SELF that is the distance from (0.0).
|
|
|