| parrotcode: Perl6 math functions | |
| Contents | Language Implementations | Perl6 | 

src/builtins/math.pir - Perl6 math functions


 our Num multi Num::abs ( Num $x )
 our Num multi Math::Basic::abs ( Num $x )
 our Int multi Num::floor ( Num $x )
 our Int multi Num::ceiling ( Num $x )
 &Num::ceil ::= &Num::ceiling;
 our Int multi Num::round ( Num $x )
 our Int multi Int ( Num $x )
 our Int multi Num::sign ( Num  $x )
 our Int multi Math::Basic::sign ( Num $x )
   if !defined($x) { return undef };
   if $x < 0       { return -1    };
   if $x > 0       { return  1    };
   if $x == 0      { return  0    };
   fail;
 }
 our Int multi Math::Basic::sign ( Num $x )
   $x <=> 0;
 }
 our Num     multi Num::sqrt ( Num  $x )
 our Complex multi Complex::sqrt ( Num  $x )
 our Complex multi Complex::sqrt ( Complex  $x )
 our Num     multi Math::Basic::sqrt ( Num $x )
$x ** 0.5 our Int multi Num::truncate ( Num $x )
 our &Num::int ::= &Num::truncate;
int() cast, for historic reasons. But see Int constructor above for a rounded version. our Num multi Num::exp         ( Num $exponent: Num :$base = Num::e )
 our Num multi Math::Basic::exp ( Num $exponent, Num :$base = Num::e )
$base ** $exponent. $base defaults to the constant e. our Num multi Num::log         ( Num $x: Num :$base )
 our Num multi Math::Basic::log ( Num $x, Num :$base )
$base, default Natural. Calling with $x == 0 is an error. &log10 := &log.assuming:base(10);
 constant Num Num::e = exp(1);
 constant Num Num::pi = atan(1,1) * 4;
 constant Int Int::pi = 3;

 our Num multi Math::Basic::rand ( Num $x = 1 )
0 ..^ $x. That is, 0 is theoretically possible, while $x is not. multi Math::Basic::srand ( Num $seed = default_seed_algorithm())
rand uses. $seed defaults to some combination of various platform dependent characteristics to yield a non-deterministic seed. Note that you get one srand() for free when you start a Perl program, so you must call srand() yourself if you wish to specify a deterministic seed (or if you wish to be differently nondeterministic). constant Complex Complex::i = Complex::sqrt(-1);


 our Num multi Num::func ( Num  $x            : :$base = 'radians' )
 our Num multi Math::Trig::func ( Num $x, :$base = 'radians' )
:$base is used to declare how you measure your angles. Given the value of an arc representing a single full revolution. $base          Result
 ----           -------
 /:i ^r/        Radians  (2*pi)
 /:i ^d/        Degrees  (360)
 /:i ^g/        Gradians (400)
 Num            Units of 1 revolution.
 my module Trig ::= Math::Trig.assuming(:base<degrees>);
 our Num multi Math::Trig::atan2 ( Num $y, Num $x = 1 : Num :$base )
atan computes the arctangent of $y/$x, and takes the quadrant into account. Otherwise behaves as other trigonometric functions.
|  |   |