NAME ^

src/pmc/complex.pmc - Complex Numbers PMC Class

DESCRIPTION ^

Complex provides a representation of complex numbers. It handles string parsing/generating and basic mathematical operations.

Functions ^

static void complex_parse_string(PARROT_INTERP, FLOATVAL *re, FLOATVAL *im, STRING *value)

Parses the string in value to produce a complex number, represented by the real (*re) and imaginary (*im) parts. Raises an exception if it cannot understand the string. The string should be of the form a+bi with optional spaces around + and before i. You can also use j instead of i.

PMC *instantiate(PMC *sig)

Create a new complex PMC with passed arguments according to pdd03.

opcode_t *invoke(void *next)

Pythonic object constructor. SELF is a Complex Class object. Return a new complex object according to 2.1. Built-in Functions.

Methods ^

void init()

Initializes the complex number with the value 0+0i.

void init_pmc(PMC *initializer)

Initializes the complex number with the specified values. (not implemented)

void destroy()

Cleans up.

PMC *clone()

Creates an identical copy of the complex number.

INTVAL get_integer()

Returns the modulus of the complex number as an integer.

FLOATVAL get_number()

Returns the modulus of the complex number.

STRING *get_string()

Returns the complex number as a string in the form a+bi.

INTVAL get_bool()

Returns true if the complex number is non-zero.

INTVAL get_integer_keyed(PMC *key)

INTVAL get_integer_keyed_str(STRING *key)

FLOATVAL get_number_keyed(PMC *key)

FLOATVAL get_number_keyed_str(STRING *key)

PMC *get_pmc_keyed(PMC *key)

PMC *get_pmc_keyed_str(STRING *key)

Returns the requested number (real part for real and imaginary for imag).

PMC *get_pmc_keyed_int(INTVAL key)

Returns the requested number (real part for 0 and imaginary for 1).

FLOATVAL get_number_keyed_int(INTVAL key)

Quick hack to emulate get_real() and get_imag():

  key = 0 ... get real part
  key = 1 ... get imag part
void set_number_keyed_int(INTVAL key, FLOATVAL v)

Set real or imag depending on key

void set_string_native(STRING *value)

Parses the string value into a complex number; raises an exception on failure.

void set_pmc(PMC *value)

if value is a Complex PMC then the complex number is set to its value; otherwise value's string representation is parsed with set_string_native().

void set_integer_native(INTVAL value)

void set_number_native(FLOATVAL value)

Sets the real part of the complex number to value and the imaginary part to 0.0

void set_integer_keyed(PMC *key, INTVAL value)

void set_integer_keyed_str(STRING *key, INTVAL value)

void set_number_keyed(PMC *key, FLOATVAL value)

void set_number_keyed_str(STRING *key, FLOATVAL value)

void set_pmc_keyed(PMC *key, PMC *value)

void set_pmc_keyed_str(STRING *key, PMC *value)

Sets the requested number (real part for real and imaginary for imag) to value.

PMC *add(PMC *value, PMC *dest)

PMC *add_int(INTVAL value, PMC *dest)

PMC *add_float(FLOATVAL value, PMC *dest)

Adds value to the complex number, placing the result in dest.

PMC *subtract(PMC *value, PMC *dest)

PMC *subtract_int(INTVAL value, PMC *dest)

PMC *subtract_float(FLOATVAL value, PMC *dest)

Subtracts value from the complex number, placing the result in dest.

PMC *multiply(PMC *value, PMC *dest)

PMC *multiply_int(INTVAL value, PMC *dest)

PMC *multiply_float(FLOATVAL value, PMC *dest)

Multiplies the complex number with value, placing the result in dest.

void i_multiply(PMC *value)

void i_multiply_int(INTVAL value)

void i_multiply_float(FLOATVAL value)

Multiplies the complex number SELF inplace with value.

PMC *divide(PMC *value, PMC *dest)

PMC *divide_int(INTVAL value, PMC *dest)

PMC *divide_float(FLOATVAL value, PMC *dest)

Divide the complex number by value, placing the result in dest.

void i_divide(PMC *value, PMC *dest)

void i_divide_int(INTVAL value, PMC *dest)

void i_divide_float(FLOATVAL value, PMC *dest)

Divide the complex number SELF by value inplace.

Throws divide by zero exception if divisor is zero.

PMC *neg(PMC *dest)

void neg()

Set dest to the negated value of SELF.

INTVAL is_equal(PMC *value)

Compares the complex number with value and returns true if they are equal.

PMC *absolute(PMC *dest)

void i_absolute()

Sets dest to the absolute value of SELF that is the distance from (0.0).

METHOD ln()

Returns the natural logarithm of SELF as a PMC.

METHOD exp()

Returns e ^ SELF as a PMC.

METHOD PMC *sin()

METHOD PMC *cos()

METHOD PMC *tan()

METHOD PMC *csc()

METHOD PMC *sec()

METHOD PMC *cot()

Returns FUNC(SELF).

METHOD PMC *asin()

METHOD PMC *acos()

METHOD PMC *atan()

METHOD PMC *acsc()

METHOD PMC *asec()

METHOD PMC *acot()

Returns the inverse function of SELF.

METHOD PMC *sinh()

Returns the arctangent of SELF.

METHOD PMC *cosh()

Returns the arcsine of SELF.

METHOD PMC *tanh()

Returns the arccosine of SELF.

METHOD PMC *asinh()

METHOD PMC *acosh()

METHOD PMC *atanh()

METHOD PMC *acsch()

METHOD PMC *asech()

METHOD PMC *acoth()

The inverse hyperbolic functions. Currently all broken, but for func(a+bi) = c+di, |c| and |d| will be correct, confusingly enough.

PMC *pow(PMC *value, PMC *dest)

Return SELF to the valueth power and return result in dest.

METHOD PMC *sqrt()

Return the square root of SELF.


parrot