NAME ^

src/builtins/math.pir - Perl6 math functions

Math::Basic ^

Functions ^

floor
 our Int multi Num::floor ( Num $x )
Returns the highest integer not greater than $x.
ceiling
 our Int multi Num::ceiling ( Num $x )
 &Num::ceil ::= &Num::ceiling;
Returns the lowest integer not less than $x.
round
 our Int multi Num::round ( Num $x )
 our Int multi Int ( Num $x )
Returns the nearest integer to $x. The algorithm is floor($x + 0.5). (Other rounding algorithms will be given extended names beginning with "round".)
sign
 our Int multi Num::sign ( Num  $x )
 our Int multi Math::Basic::sign ( Num $x )
   if !defined($x) { return undef };
   if $x < 0       { return -1    };
   if $x > 0       { return  1    };
   if $x == 0      { return  0    };
   fail;
 }
or more succinctly:
 our Int multi Math::Basic::sign ( Num $x )
   $x <=> 0;
 }
exp
 our Num multi Num::exp         ( Num $exponent: Num :$base = Num::e )
 our Num multi Math::Basic::exp ( Num $exponent, Num :$base = Num::e )
Performs similar to $base ** $exponent. $base defaults to the constant e.
log10
 &log10 := &log.assuming:base(10);
e
 constant Num Num::e = exp(1);
Inf / NaN
pi
 constant Num Num::pi = atan(1,1) * 4;
 constant Int Int::pi = 3;
radcalc

TODO: Functions ^

rand
 our Num multi Math::Basic::rand ( Num $x = 1 )
Pseudo random number in range 0 ..^ $x. That is, 0 is theoretically possible, while $x is not.
srand
 multi Math::Basic::srand ( Num $seed = default_seed_algorithm())
Seed the generator rand uses. $seed defaults to some combination of various platform dependent characteristics to yield a non-deterministic seed. Note that you get one srand() for free when you start a Perl program, so you must call srand() yourself if you wish to specify a deterministic seed (or if you wish to be differently nondeterministic).
i
 constant Complex Complex::i = Complex::sqrt(-1);

Math::Trig ^

Functions ^

Standard Trig Functions
 our Num multi Num::func ( Num  $x            : :$base = 'radians' )
 our Num multi Math::Trig::func ( Num $x, :$base = 'radians' )
where func is one of: sin, cos, tan, asin, acos, atan, sec, cosec, cotan, asec, acosec, acotan, sinh, cosh, tanh, asinh, acosh, atanh, sech, cosech, cotanh, asech, acosech, acotanh.Performs the various trigonometric functions.Option :$base is used to declare how you measure your angles. Given the value of an arc representing a single full revolution.
 $base          Result
 ----           -------
 /:i ^r/        Radians  (2*pi)
 /:i ^d/        Degrees  (360)
 /:i ^g/        Gradians (400)
 Num            Units of 1 revolution.
Note that module currying can be used within a lexical scope to specify a consistent base so you don't have to supply it with every call:
 my module Trig ::= Math::Trig.assuming(:base<degrees>);
This overrides the default of "radians".NOTE: These only work with radians so far.
atan
 our Num multi Math::Trig::atan2 ( Num $y, Num $x = 1 : Num :$base )
This second form of atan computes the arctangent of $y/$x, and takes the quadrant into account. Otherwise behaves as other trigonometric functions.[Note: changed atan back to atan2, or the default $x = 1 will confuse MMD. The other alternative would be to remove the default. --law]


parrot