NAME

src/pmc/complex.pmc - Complex Numbers PMC Class

DESCRIPTION

Complex provides a representation of complex numbers. It handles string parsing/generating and basic mathematical operations.

Functions

static void complex_parse_string(PARROT_INTERP, FLOATVAL *re, FLOATVAL *im, STRING *value)
Parses the string in value to produce a complex number, represented by the real (*re) and imaginary (*im) parts. Raises an exception if it cannot understand the string. The string should be of the form a+bi with optional spaces around + and before i. You can also use j instead of i.

Methods

void init()
Initializes the complex number with the value 0+0i.
void init_pmc(PMC *initializer)
Initializes the complex number with the specified initializer. The initializer can be a string PMC or a numeric array with (real, imag)
PMC *clone()
Creates an identical copy of the complex number.
void freeze(PMC *visit)
void thaw(PMC *visit)
Serialize/deserialize this object for bytecode.
INTVAL get_integer()
Returns the modulus of the complex number as an integer.
FLOATVAL get_number()
Returns the modulus of the complex number.
STRING *get_string()
Returns the complex number as a string in the form a+bi.
INTVAL get_bool()
Returns true if the complex number is non-zero.
INTVAL get_integer_keyed(PMC *key)
INTVAL get_integer_keyed_str(STRING *key)
FLOATVAL get_number_keyed(PMC *key)
FLOATVAL get_number_keyed_str(STRING *key)
PMC *get_pmc_keyed(PMC *key)
PMC *get_pmc_keyed_str(STRING *key)
Returns the requested number (real part for real and imaginary for imag).
PMC *get_pmc_keyed_int(INTVAL key)
Returns the requested number (real part for 0 and imaginary for 1).
FLOATVAL get_number_keyed_int(INTVAL key)
Quick hack to emulate get_real() and get_imag():
  key = 0 ... get real part
  key = 1 ... get imag part
void set_number_keyed_int(INTVAL key, FLOATVAL v)
Set real or imag depending on key
void set_string_native(STRING *value)
Parses the string value into a complex number; raises an exception on failure.
void set_pmc(PMC *value)
if value is a Complex PMC then the complex number is set to its value; otherwise value's string representation is parsed with set_string_native().
void set_integer_native(INTVAL value)
void set_number_native(FLOATVAL value)
Sets the real part of the complex number to value and the imaginary part to 0.0
void set_integer_keyed(PMC *key, INTVAL value)
void set_integer_keyed_str(STRING *key, INTVAL value)
void set_number_keyed(PMC *key, FLOATVAL value)
void set_number_keyed_str(STRING *key, FLOATVAL value)
void set_pmc_keyed(PMC *key, PMC *value)
void set_pmc_keyed_str(STRING *key, PMC *value)
Sets the requested number (real part for real and imaginary for imag) to value.
PMC *add(PMC *value, PMC *dest)
PMC *add_int(INTVAL value, PMC *dest)
PMC *add_float(FLOATVAL value, PMC *dest)
Adds value to the complex number, placing the result in dest.
PMC *subtract(PMC *value, PMC *dest)
PMC *subtract_int(INTVAL value, PMC *dest)
PMC *subtract_float(FLOATVAL value, PMC *dest)
Subtracts value from the complex number, placing the result in dest.
PMC *multiply(PMC *value, PMC *dest)
PMC *multiply_int(INTVAL value, PMC *dest)
PMC *multiply_float(FLOATVAL value, PMC *dest)
Multiplies the complex number with value, placing the result in dest.
void i_multiply(PMC *value)
void i_multiply_int(INTVAL value)
void i_multiply_float(FLOATVAL value)
Multiplies the complex number SELF inplace with value.
PMC *divide(PMC *value, PMC *dest)
PMC *divide_int(INTVAL value, PMC *dest)
PMC *divide_float(FLOATVAL value, PMC *dest)
Divide the complex number by value, placing the result in dest.
void i_divide(PMC *value, PMC *dest)
void i_divide_int(INTVAL value, PMC *dest)
void i_divide_float(FLOATVAL value, PMC *dest)
Divide the complex number SELF by value inplace.Throws divide by zero exception if divisor is zero.
PMC *neg(PMC *dest)
void neg()
Set dest to the negated value of SELF.
INTVAL is_equal(PMC *value)
Compares the complex number with value and returns true if they are equal.
PMC *absolute(PMC *dest)
void i_absolute()
Sets dest to the absolute value of SELF that is the distance from (0.0).
METHOD ln()
Returns the natural logarithm of SELF as a PMC.
METHOD exp()
Returns e ^ SELF as a PMC.
METHOD PMC *sin()
METHOD PMC *cos()
METHOD PMC *tan()
METHOD PMC *csc()
METHOD PMC *sec()
METHOD PMC *cot()
Returns FUNC(SELF).
METHOD PMC *asin()
METHOD PMC *acos()
METHOD PMC *atan()
METHOD PMC *acsc()
METHOD PMC *asec()
METHOD PMC *acot()
Returns the inverse function of SELF.
METHOD PMC *sinh()
Returns the arctangent of SELF.
METHOD PMC *cosh()
Returns the arcsine of SELF.
METHOD PMC *tanh()
Returns the arccosine of SELF.
METHOD PMC *asinh()
METHOD PMC *acosh()
METHOD PMC *atanh()
METHOD PMC *acsch()
METHOD PMC *asech()
METHOD PMC *acoth()
The inverse hyperbolic functions. Currently all broken, but for func(a+bi) = c+di, |c| and |d| will be correct, confusingly enough.
METHOD PMC *pow(PMC *value)
Raise SELF to the power of value. Replacement for the old pow() vtable, which was deleted.TODO: Requires testing
METHOD PMC *sqrt()
Return the square root of SELF.